Amḍan asemlal
Deg tusnakt, amḍan asemlal d amḍan yezmer ad yettwasumer s talɣa a + bi, anda (a) d (b) id sin n yimḍanen ilawen, ma d i d yiwet n tigget tasnumkant (d anamek-is ur nezmir ara ad tt-naf deg tilawt) yettwammlen akken i² = −1. Amḍan ( a ) yettwasemma d amur ilaw n umḍan asemlal, ma d ( b ) d amur asugnan-ines.
Tagrumma n yimḍanen isemlalen tettwasemma s uzemz C. Tesnulfa-d akken ad tesnerni tagrumma n yimḍanen ilaw R s umḍan i yesɛan tazmert ad yefk tifrat i kra n tenkarin ur nesɛi ara tifrat deg R, am x² = −1. Yal amḍan ilaw d amḍan asemlal anda amur asugnan-ines d ilem. Ihi, tagrumma n yimḍanen ilaw d tadugrumma n tegrumma n yimḍanen isemlalen.
Yella waṭas n yisnasen n yimḍanen isemlalen deg yiḥricen yemgaraden n tusnakt d tussna. Deg tsengama, ttusemrasen deg uselmed n wahilen n trisiti akked umussu ahuzzan. Deg tsengama tatrart, ttusemrasen deg tenfalit n yimrigen imaẓlayen. Deg tesnileswalt tanmettit, ttusemrasen deg uselmed n yiferdisen n tutlayt. Ttusemrasen daɣen deg uẓawan d uselmed n yiẓuran n tenkarin.
Amḍan i
ẓregAmḍan i d tigget tasugnant. Yettwammel s i² = -1. Asekcam n umḍan-agi yefka tazmert i tusnakt ad taf tifrat i waṭas n tenkarin ur nesɛi ara tifrat deg umaɣrad n yimḍanen ilaw.
Iḥricen n umḍan asemlal x+iy
ẓregAmḍan asemlal z = a + bi yegber sin n yiḥricen:
- Amur ilaw (a): D amḍan ilaw yettwazemren ad yili d amagnu neɣ d ameɣẓan.
- Amur asugnan (bi): Yegber amḍan ilaw b yeddan d tigget tasugnant i.
Tanekda
ẓregTalɣa tajebrant
ẓregZ = a + bi Anda:
- a d amur ilaw
- b d amur asugnan
- i d tigget tasugnant
Talɣa tasfaylut
ẓregZ = r(cos(ϕ) + i sin(ϕ)) Anda:
- r neɣ |z| d azal amagdez (module)
- ϕ neɣ arg(z) d tiɣiret (argument)
Tikwal amḍan asemlal yettwaru deg yiwet n talɣiwin igi:
- talɣa tasusmirt s usumres n tanfalit n Euler
- z = (r, θ) Talɣa tasfaylut
- z = r (cosθ + i sinθ) = r cis (θ) (s tuggza cis[1])
azal amagdez n umḍan asemlal z d aẓar amkuẓ n timernit n yimkuẓen n yiḥricen ilawen akked isugnanen :
akken ad nsiḍen θ sef talɣa taljebrit a + bi, nezmer ad nessemres tiwuriwin arccos, arcsin neɣ arctan :
Timhal d wassaɣen
ẓregTimernit
ẓregMa yella d sin n yimḍanen isemlalen:
Timernit n sin yimḍanen isemlalen d timernit n yiḥricen ilawanen d yiḥricen isugnanen yal yiwen ɣer wayeḍ.
Afaris
ẓregMa yella d sin n yimḍanen isemlalen:
Afaris n sin yimḍanen isemlalen yettwaxdem s usemres n tsuddest s usmekti bell i
Taẓunt
ẓregMa yella d sin n yimḍanen isemlalen ( ):
Taẓunt n sin yimḍanen isemlalen tettwaxdem s usemres n uneftay n umḍan asemlal deg umetṭerf d wadda, sakin s ubeṭṭu n ufaris ɣef tigget.
Aneftay
ẓreg
Aneftay n umḍan asemlal id .
Aneftay yesɛa amur ilaw yecrek d umḍan amenzu, ma d amur asugnan yettuɣal d amgal-is.
Amezruy
ẓregTikti n umḍan asemlal d tin yettwaxedmen s kra n yimekdiyen n tusnakt. Deg tazwara, imussnawen xeddmen fell-as akken ad afen tifrat i tenkarin ur nesɛi ara tifrat deg umagrad n yimḍanen ilaw. Amedya amezwaru n usemres n yiwet n tigget tasugnant i uselkin n tenkarit n uswir wis sin yettwaf-d deg yixeddimen n Gerolamo Cardano deg 1545. Deg useggas n 1572, Rafael Bombelli yesnulfa-d ilugan n tmahelt ɣef yimḍanen isemlalen deg udlis-ines L'Algebra. Deg lqern wis 18, imussnawen am Abraham de Moivre d Leonhard Euler ssnernin aselmed n yimḍanen isemlalen, ladɣa s usemres-nsen deg tmahilin tisnumkanin. Dɣa d Euler i d-yefkan azamul i i tigget tasugnant.
- Deg lqern wis 16, imussnawen n tusnakt bdan ttnadint ɣef tifrat n tenkarin n uswir wis kraḍ d wis kuẓ.
- Girolamo Cardano (1501-1576) d win i d-yewwin tikti tamezwarut n yimḍanen isemlalen.
- Rafael Bombelli (1526-1572) yerra-d lwelha ɣer wamek ara nesemres imḍanen isemlalen deg tenkarin.
- Leonhard Euler (1707-1783) d netta i d-yefkan isem i d tigget tasugnant.
- Carl Friedrich Gauss (1777-1855) yessebded tazrawt tamatant n yimḍanen isemlalen.
Tuggza | Alnamek | Ameskar | Azemz |
---|---|---|---|
℞. m. 15 | amḍan ur yezmir ad yili acku amkuẓ-is (tazmert tis 2 ) tegda-d | Cardan | 1545 |
"tasugnant" | Yal tasmekta yesɛan aẓar amkuẓ n umḍan azedran | Descartes | 1637 |
Euler | 1777 | ||
azal amagdez r | azal amagdez n umḍan asemlal a +bi id
|
Argand | 1806 |
Azal amagdez n Z | Karl Weierstrass | ||
anaftay | Anaftay n id | Cauchy | 1821 |
amḍan asemlal | a + ib | Gauss | 1831 |
asugnan kan | ihi | ||
"Norme" | amkuẓ n wazal amagdez | ||
Tiɣiret | Tiɣmert gar amaway n 1 akked n Z | Cauchy | 1838 |
Awṣil | awṣil w wagaz A n yimsidag id umḍan asemlal a+bi | 1847 |