Amaway (tusnakt d tfizikt )
Amaway d tɣawsa tagejdant deg tusnakt, ladɣa deg tanzeggit tusliḍt d tusna n yigazen. Yettwaɛqal s teɣzi-ines d tanila-ines.
Tadabut
ẓregAmaway d tɣawsa tusnakt yesɛan teɣzi d tanila. Yezmer ad yettwammel s useqdec n yimsidag deg unagraw n yimsidag, neɣ s useqdec n teɣzi d yikusinusen inilayen.
Imawayen tigget
ẓregLlan kraḍ n yimawayen tigget deg unagraw n yimsidag s kraḍ n tsektiwin:
- 𝑖 = (1,0,0)
- 𝑗 = (0,1,0)
- 𝑘⃗ = (0,0,1)
Yal amaway tigget yesɛa teɣzi n 1:
|𝑖 | = |𝑗 | = |𝑘⃗ | = 1
Imsidag n umaway
ẓregAmaway 𝑢⃗ yezmer ad yettwammel s yimsidag-ines:
Anda X, Y, d Z d imsidag n umaway 𝑢⃗ deg unagraw n yimsidag s kraḍ n tsektiwin.
Teɣzi n umaway
ẓreg
Teɣzi n umaway 𝑢⃗ tettwasuḍen s:
Tiɣmert gar sin n yimawayen
ẓreg
Tiɣmert θ gar sin n yimawayen 𝑢⃗ d 𝑣 tezmer ad tettwammel s:
cos θ = (𝑢⃗ · 𝑣 ) / (|𝑢⃗ | |𝑣 |)
Anda 𝑢⃗ · 𝑣 d afaris n sin yimawayen.
Timernit n yimawayen
ẓregTimernit n sin yimawayen 𝑢⃗ d 𝑣 tettili s tmernit n yimsidag-nsen:
𝑢⃗ + 𝑣 = (X1 + X2, Y1 + Y2, Z1 + Z2)
Timernit n yimawayen tesɛa sin yisuḍaf igejdanen:
- Asaḍuf n tsunfelt: 𝑢⃗ + 𝑣 = 𝑣 + 𝑢⃗
- Asaḍuf n tsedrewt: (𝑢⃗ + 𝑣 ) + 𝑤⃗ = 𝑢⃗ + (𝑣 + 𝑤⃗ )
Tukksa n yimawayen
ẓregTukksa n yimawayen tettili s tukksa n yimsidag-nsen:
𝑢⃗ - 𝑣 = (X1 - X2, Y1 - Y2, Z1 - Z2)
Amaway gar sin yigazen
ẓregAmaway gar sin yigazen A(x0, y0, z0) d B(x1, y1, z1) yettwaḥsab s:
𝑟 = 𝐴𝐵⃗⃗⃗⃗⃗ = (x1 - x0)𝑖 + (y1 - y0)𝑗 + (z1 - z0)𝑘⃗
Teɣzi n umaway-a tettwaḥsab s:
|𝑟 | = |𝐴𝐵⃗⃗⃗⃗⃗ | = √((x1 - x0)² + (y1 - y0)² + (z1 - z0)²)
Ikusinusen inilayen
ẓregIkusinusen inilayen n umaway 𝑟 d:
- cos α = X / |𝑟 |
- cos β = Y / |𝑟 |
- cos γ = Z / |𝑟 |
Anda X, Y, d Z d imsidag n umaway 𝑟 .
Iseqdacen n yimawayen
ẓregImawayen ttwafen deg waṭas n yisenfaren n tusna d tejjunant:
- Deg tanzeggit: i usenmel n yiɣallen, izirigen, d yiglayanen.
- Deg tusna n tmacinin: i usenmel n umussu d tɣawla.
- Deg tusna n yiḍummen: i usenmel n uḍummu n yigazen.
- Deg tusna n trisiti: i usenmel n wurti arisdan d wurti akamyan.
- Deg tusna n yiɣersiwen: i usenmel n umussu n yiɣersiwen.